Betekenis van:
inertial navigation system

inertial navigation system
Zelfstandig naamwoord
    • a system to control a plane or spacecraft; uses inertial forces

    Synoniemen

    Hyperoniemen


    Voorbeeldzinnen

    1. An inertial measurement device (e.g., an attitude and heading reference system, inertial reference unit, or inertial navigation system);
    2. An autonomous flight control and navigation capability (e.g., an autopilot with an Inertial Navigation System); or
    3. Unmanned aerial vehicles having any of the following: a. An autonomous flight control and navigation capability (e.g., an autopilot with an Inertial Navigation System); or
    4. An inertial measurement device (e.g., an attitude and heading reference system, inertial reference unit, or inertial navigation system); b. One or more external sensors used to update the position and/or velocity, either periodically or continuously throughout the flight (e.g., satellite navigation receiver, radar altimeter, and/or Doppler radar); and
    5. An 'integrated navigation system' typically incorporates the following components: a. An inertial measurement device (e.g., an attitude and heading reference system, inertial reference unit, or inertial navigation system); b. One or more external sensors used to update the position and/or velocity, either periodically or continuously throughout the flight (e.g., satellite navigation receiver, radar altimeter, and/or Doppler radar); and c. Integration hardware and software;
    6. Hybrid Inertial Navigation Systems embedded with Global Navigation Satellite Systems(s) (GNSS) or with "Data-Based Referenced Navigation" ("DBRN") System(s) for navigation, attitude, guidance or control, subsequent to normal alignment and having an INS navigation position accuracy, after loss of GNSS or "DBRN" for a period of up to four minutes, of less (better) than 10 metres "Circular Error Probable" (CEP);
    7. Hybrid Inertial Navigation Systems embedded with Global Navigation Satellite Systems(s) (GNSS) or with "Data-Based Referenced Navigation" ("DBRN") System(s) for navigation, attitude, guidance or control, subsequent to normal alignment and having an INS navigation position accuracy, after loss of GNSS or "DBRN" for a period of up to four minutes, of less (better) than 10 metres ’Circular Error Probable’ (’CEP’);
    8. Hybrid Inertial Navigation Systems embedded with Global Navigation Satellite System(s) (GNSS) or with "Data-Based Referenced Navigation" ("DBRN") System(s) for attitude, guidance or control, subsequent to normal alignment, having an INS navigation position accuracy, after loss of GNSS or "DBRN" for a period of up to four minutes, of less (better) than 10 metres 'Circular Error Probable' (CEP);
    9. Hybrid Inertial Navigation Systems embedded with Global Navigation Satellite Systems(s) (GNSS) or with "Data-Based Referenced Navigation" ("DBRN") System(s) for attitude, guidance or control, subsequent to normal alignment, having an INS navigation position accuracy, after loss of GNSS or "DBRN" for a period of up to four minutes, of less (better) than 10 metres 'Circular Error Probable' (CEP).
    10. Integrated flight instrument systems, which include gyrostabilisers or automatic pilots, designed or modified for use in space launch vehicles specified in 9A004, unmanned aerial vehicles specified in 9A012 or sounding rockets specified in 9A104; c. 'Integrated navigation systems', designed or modified for space launch vehicles specified in 9A004, unmanned aerial vehicles specified in 9A012 or sounding rockets specified in 9A104 and capable of providing a navigational accuracy of 200 m Circle of Equal Probability (CEP) or less. Technical Note: An 'integrated navigation system' typically incorporates the following components: 1. An inertial measurement device (e.g., an attitude and heading reference system, inertial reference unit, or inertial navigation system); 2.
    11. The failure of an inertial navigation unit is detected on the aircraft by indications from the control and display unit (CDU) or by the status message from the corresponding sub-system.
    12. The failure of an inertial navigation unit is detected on the aircraft by indications from the Control and Display Unit (CDU) or by the status message from the corresponding sub-system.
    13. The failure of an inertial navigation unit is detected on the aircraft by indications from the control and display unit (CDU) or by the status message from the corresponding sub-system. By following the manufacturer's manual, the cause of the failure may be localised at the level of the malfunctioning line replaceable unit (LRU). The operator then removes the LRU and replaces it with a spare.
    14. The failure of an inertial navigation unit is detected on the aircraft by indications from the control and display unit (CDU) or by the status message from the corresponding sub-system. By following the manufacturer's manual, the cause of the failure may be localised at the level of the malfunctioning line replaceable unit (LRU). The operator then removes the LRU and replaces it with a spare. 2.